Introduction

- Presence of computers and other internet enabled devices approaching saturation Europe wide
 - (EU – Kids online, 2004 to 2014)
- Many homes now have multiple devices making supervision and monitoring difficult
- Children using computers at earlier ages and for longer than ever before
 - Habit formation and skill development (Livingstone et al. 2011)
- Evidence for low overall digital literacy
 - (European commission 2013)

Aims

Summary of Casey et al (2012)
- Importance of controlling for social gradient in test outcomes
 - (Williams et al 2009)
- Better test outcomes at 9 years
 - Moderate computer use
 - Informational computer use
- Worse test outcomes at 9 years
 - Social media use

Aims of current study
- Move from cross sectional to a longitudinal view
 - Classes of behaviour (latent classes)
 - Change over time (latent growth)
Sample

- GUI Cohort ‘98 Anonymised Microdata File (AMF) Waves 1-4

Longitudinal fixed panel design

- Sample size
 - Wave 1 9yrs N = 8,568
 - Wave 2 13yrs N = 7,525
 - Wave 3 17yrs N = 6,210
 - Wave 4 20yrs N = 5,190

- Evidence of differential attrition across waves (Williams et al, 2009). Re-weighted using 20yr weight

Academic performance variables

- 9 Year Data
 - Drumcondra Primary Maths Test
 - British Ability Scales (matrices)

- 13 Year Data
 - Drumcondra Numerical Ability Test

- 17 Year Data
 - Junior Certificate Mathematics

- 20 Year Data
 - Leaving Certificate Mathematics

- Scoring of Junior Certificate
 - Junior Certificate (Grade A-E)
 - Junior Certificate level (Higher, Ordinary, Foundation)
 - Scale constructed following a coding scheme producing a Leaving Certificate points total equivalent range 10-100

- Academic scores parameterised as Z-scores Mean of zero, SD of one.

Computer applications at 9 and 13

- Computer use at 9
 - How often?
 - None, a little, a lot
 - Playing games
 - Chatrooms
 - Media Consumption
 - E-mailing
 - Instant messaging
 - Surf for fun
 - Homework
 - School projects

- Computer use at 13
 - How often?
 - None, a little, a lot
 - Playing games
 - Social Media
 - Media Consumption
 - Surf for fun
 - Homework
 - School Projects

Computer usage intensity at 9 and 13

- 9yr
- 13yr
- 7%
- 10%
- 12%
- 22%
- 22%
- 58%
- 46%
- 46%
- 12%
- 0%
- 12%

Intensity of computer usage

Percentage of children

No computer at home
Does not use home computer
Uses computer a little
Uses computer a lot
No computer at home
Uses computer a little
Uses computer a lot

02/12/2021
Applications used at 9 by gender

Applications used at 13 by gender

Latent class model example

• O’Neill and Dinh (2018)
• Datasets
 – EU kids online (2011)
 – Net Children Go Mobile
• 4 broad clusters outlined
 – Entertainment oriented
 – Learning & handheld device oriented
 – Social networking & communication oriented
 – Active ‘savvy’ user

Latent growth model example
Latent Class Models

- Begin with baseline model (1 class) and increase number of latent classes to balance model fit statistics with a parsimonious number of classes of behaviour

Latent growth models

- Model 1: Baseline model
- Model 2: Household Level covariates
- Model 3: Child level covariates
- Model 4: Latent Class variables

Summary of model fit statistics

Baseline models 1-3
Covariates (Williams et al 2009)

- PCG(SCG) Education
- HSD Structure
- HSD Social class
- Equivalised Income
- Child gender
- Child ability (British ability scales-Matrices)

Model Fit Statistics support all models

- Chi-sq to df ratio
- CFI values above 0.9
- RMSEA values below 0.10
- SRMR values below 0.10
Model 4 summary
Growth model with latent class variables

<table>
<thead>
<tr>
<th>Starting point (Intercept)</th>
<th>Mathematics (Standardised) β</th>
</tr>
</thead>
<tbody>
<tr>
<td>Active users</td>
<td>0.20**</td>
</tr>
<tr>
<td>Academically oriented users</td>
<td>0.32***</td>
</tr>
<tr>
<td>Non-computer users</td>
<td>0.23***</td>
</tr>
<tr>
<td>Non academic user1</td>
<td>Ref</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Change over time (Slope)</th>
<th>Mathematics (Standardised) β</th>
</tr>
</thead>
<tbody>
<tr>
<td>Active users</td>
<td>0.48***</td>
</tr>
<tr>
<td>Academically oriented user</td>
<td>0.23**</td>
</tr>
<tr>
<td>Socially oriented user</td>
<td>0.21**</td>
</tr>
<tr>
<td>Non academic user2</td>
<td>Ref</td>
</tr>
</tbody>
</table>

Reference categories:
• Non academic computer users at 9 and 13

* P < .05, ** p < .01, *** p < .001

17

Implications

• Findings are supported both cross-sectionally and longitudinally
• Evidence that informational computer use supports better educational outcomes
• Evidence that not engaging in productive use of computers is associated with poorer outcomes
• Support for “Ladder of opportunities” concept
 — (Livingstone et al. 2011)

18

Future research

• Challenges of parameterisation of educational outcomes
• Expand longitudinal modelling of computer use
• Flexible control variables
• Develop guidelines based around both time and age appropriate activities

19

Thank you

Thanks to all GUI team members and especially to study participants

Questions, comments and suggestions are very welcome

Contact: desmond.omahony@esri.ie

20